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J .  P H Y S .  A ( P R O C .  PHYS.  S O C . ) ,  1968,  S E R .  2,  VOL.  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Mixture of outgoing and incoming gravitational radiation : 
change of mass of the source of radiation? 

M. A. ROTENBERG 
The  hTegev Institute for Arid Zone Research, Beersheva, Israel 
M S .  received 6th November 1967 

Abstract. It has been fairly well established theoretically in recent works that 
outward travelling spherical gravitational waves carry away energy from their source. 
Methods of successive approximations applied to the Einstein gravitational field 
equations of general relativity have been used for that purpose. The object of this 
paper is to show, by a double-series approximation method, a similar result for the 
general case of any mixture of outgoing and incoming radiation. 

1. Introduction 
It is now a fairly well-proved fact that, in the general theory of relativity, outgoing 

gravitational waves from an isolated cohesive material source have a real physical signifi- 
cance. In  particular, by means of a double-series approximation method applied to the 
gravitational field equations3 

R,, = 0 (1.1) 

for free space, the following result for sandwich waves was shown in works by Bonnor 
(1959), Rotenberg (1964), Bonnor and Rotenberg (1966). 

In  the second approximation to the field equations the source suffers a secular loss of 
gravitational mass, except for a very special type of oscillation of the source. This loss of 
mass is equal to the total energy flux of outgoing radiation as calculated from the linear 
approximation. 

This was established for axi-symmetric sources, such as a system of two point masses 
made to oscillate by means of a light spring connecting them. Using any oscillating linear 
distribution as a model of the source, this paper sets out to show a similar result in the 
general case of any mixture of outgoing and incoming gravitational radiation. From the 
extended result it will be immediately deduced that stationary waves produce no total 
change of mass of the source, as expected. 

The linear source is described in detail in $2 .  In  $ 3  the double-parameter approxi- 
mation method is presented, and the metric to be employed by this method for the linear 
source is given in $ 4. In  $ 5  an appropriate external solution of the linear approximation 
is derived for the source. Section 6 is preliminary to the solution of the non-linear approxi- 
mation in $ 7 ,  from which the main result, concerning variation in mass of the source, is 
deduced. For convenience, an appendix is set aside for the inclusion of the approximate 
field equations and their solution, corresponding to the metric chosen in $ 4. 

2. The source and receiver 
We shall suppose that, in the linear approximation to (l.l), distance, time and mass 

retain their Newtonian meanings. 
The source will be chosen as a linear cohesive distribution of matter of finite length 

vibrating along the axis Ox, of a (pseudo Galilean) rectangular Cartesian coordinate system 
Oxyx, with its centre of mass coinciding with the origin 0. Then, if !(t) is the sth moment 

?This  paper constituted partial contents of a thesis submitted by the author (1964) to the 
University of London for the degree of Ph.D. 

3 In  this paper, unless otherwise stated or implied a Latin index runs from 1 to 4 ;  a Greek 
index from 1 to 3. The  summation convention applies to both indices. 
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IWixture of outgoing and incoming gravitational radiation 28 1 

at time t ,  of the source about the plane x = 0, 
I 

I ( t )  = 0. (2.1) 
We shall suppose that the source is made t,o execute arbitrary, smooth motion along Ox 
during the finite period t ,  < t < t,. Then I ( t )  is an arbitrary bounded function of t which 
satisfies (2.1) for s = 1 and which is (i) constant outside the interval t ,  Q t Q t2 and 
(ii) single valued with unique derivatives of all orders in the interval t ,  < t < t,. 

In  conclusion, the vibration of the system may be considered as partly the cause of the 
outgoing waves and partly the effect of the incoming waves, so that the system acts as a 
‘source and receiver’ of the waves. 

3. The double-parameter approximation method 
We present here the double-series approximation method applicable to the external 

field of any isolated coherent material source. 
Let m be the total mass of the source and a be any chosen constant having the dimen- 

sions of length (in units of customary physical dimensions), such as the time average radius 
of gyration of the source. Both m and a are defined in the Newtonian sense but in relativistic 
units assumed in this paper. Then the method of successive approximations is to involve 
the double-series expansion of the metric tensor 

( P S )  

in terms of the parameters m and a ,  gi ,  ( p ,  s = 0 ,  1, 2, ...) being independent of m and a 
(cf. Bonnor 1959, Rotenberg 1964, Bonnor and Rotenberg 1966);;;; is the value of g,k for 
flat space-time. As will be shown in $ 5 ,  the solution of the linear approximation is, in 
fact, the part of (3 .1)  which is linear in m, namely the single-series expansion (5.14) in a. 

Substituting the expansion (3 .1)  into the field equation (1.1) and equating to zero the 
coefficient of mpaS we obtain a set of ten second-order differential equations to be called the 
( p s )  approximation. The ten equations take the forms 

In  these, the left-hand sides are linear in !%:)(and their derivatives), the right-hand sides 
are non-linear in g,k (q  < p -  1, Y < s) (and their derivatives) determined from earlier 
approximation steps. Thus any (Is) approximation is linear and homogeneous in gzic and 
their derivatives (YLm = 0) and, consequently, belongs to the linear approximation. (Of 
course, the linear approximation includes also the trivial (00) approximation corresponding 
to flat space-time.) Forp  2 2 the (ps)  approximation is non-linear: the (2s) approximations 
(s = 0,1,2, ...) constitute the second approximation, the (3s) approximations (s = 0,1,2,  ...) 
constitute the third approximation, and so forth. 

As is already known, the 4-momentum of any bounded cohesive material source 
is conserved in the linear approximation (Rotenberg 1964, 1968t) and, therefore, in the 
(Is) approximations. A change in 4-momentum may occur in the second approximation, 
and it is our aim to show that there does, in general, take place in this approximation a 
secular variation in mass of the linear source chosen in 4 2 (see $ 7). 

Finally, the solution of the (ps )  approximation, the (ps )  solution, is represented by 
piL’which satisfy (3.2). 
4. The metric 

symmetric about Ox) we shall use the axi-symmetric metric 

( 4 1 )  

( 1 s )  

(1s) 

For solving the important approximations for the source chosen in $ 2  (which is axially 

ds2 = - A dr2 - r2(B do2 + sin2 BC d42) + D dt2 (4.1) 
7 To be published. 
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where (r ,  0, +) are the (pseudo) spherical polar coordinates of the field-point P and A, 
B,  C, D are functions of Y, 0, t. This is the diagonalized form of the more general axi- 
symmetric metric 
ds2 = - A dr2 - r2(B d P  + sin2 0C d+2) + D dt2 + 2rE dr d0 + 2F dr dt  + 2rG d0 dt (4.2) 
where E,  F ,  G are also functions of r ,  0, t (see Bonnor 1959). 

Expanding the coefficients of the diagonal metric (4.1) in the form (3.1) we have 

I 
\ p = 1 s = o  I 

(4.3) 

p = l  s = o  

( P S I  ( P S )  ( P S I  ( P S )  
A ,  B ,  C, D being functions of r ,  0, t .  This notation will be used in the following 

sections. 

5. The (1s) approximations 
We obtain here suitable solutions of the linear, (Is), approximations corresponding to 

the diagonal metric (4.1). T o  do this we first derive, for any isolated coherent material 
distribution with its centre of mass taken as the origin 0, an appropriate solution of the 
linear approximation to the field equations 

Rik -+gikR = - 8 ~ T i k  (5.1) 
starting with (pseudo) Galilean coordinates x, = (x, y ,  z ,  t ) .  We then apply the solution to 
the special source in 5 2, transform to (pseudo) spherical polar coordinates and render 
diagonal the resulting approximate metric by an appropriate infinitesimal coordinate trans- 
formation (?, 8, +, t )  -+ (?*, 0*, +*, t*). We proceed as follows. 

For weak fields suppose that, in Galilean coordinates xz, 

g z i , = ? l k f Y t k ,  rz ic=yiZk=diag . ( -1 , -1 ,  -1, + I )  ( 5  4 

YFk = Y l k - i h t k ? a b y a b  yzk = Yik-$?6k?abyEb * (5.3) 

vaby;a,b = (5.4) 

yziC being small. We introduce yrk by 

and select (pseudo) Galilean coordinates x, satisfying the harmonic coordinate condition 

where the comma denotes partial differentiation. The linearized form of the field equa- 
tions (5.1) then reduces to a set of wave equations (Eddington 1924, 3 57; Landau and 
Lifshitz 1962, $ 101) 

Their solution in Kirchhoff form for mixed, outgoing and incoming, radiation may be 
written as 

ylabyrk,ab = - 16nTzk. ( 5 . 5 )  

where 
(5 .7)  
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The notations in (5.6) and (5.7) are as follows: in (5.6) the quantities yrk and y f k ,  repre- 
senting respectively the retarded and advanced potential solutions of (5.5) and (5.4), 
correspond to the radiation emitted from, and absorbed by, the sources of the field; 
cc, /3 are constants to be referred to as the strengths of the emitted and absorbed radiation, 
respectively. In  (5.7) the integration is to be carried out over any fixcd space volume V 
containing all the sources of the field, and Y* is the distance of the point P(2,) (2, = 2, y”, Z), 
included by the space element dv = d2 dy” d2 of integration, from the field-point P(x,) 
(8,  = x ,  y ,  x )  of interest. 

It will be convenient to have the multipole expansion for the solution (5.6) obtained by 
expanding the integrand in (5 .7) ,  by means of the Taylor theorem, so that Y (the fixed 
distance OP) occurs instead of Y*. The expansion involves the moments of all orders of 
T,, about the coordinate planes, which are defined for time t by 

( - )  (;e+) 

r f k / d p v . , . ( t )  = 1 X d X p X v  ’ * *  t ,  dv (vabTia,b = O)*t (5.8) 
v 

In  fact, if we employ the dimensionless moments hik,n,v,.,(t) given by 

which we suppose to be independent of the parameters m and a introduced from 5 3, 
then the expansion turns out to be (Rotenberg 1964, 1968) 

y a B  * = -4ma2r-lAaB - 4 m a 3 n , ( ~ - ~ h & ~ , ~ ,  + Y -2h,B,n) + m0(a4)  (5.10) 

yz4 = - 4ma2n,(r - + Y - 2A,4/i.) 
- 2ma3{ni.n,r-1Qi41du + ( h a n k  - S n , ) ( ~ - 2 h ~ l r l u  + Y - ~ A , ~ / ~ , ~ ) } +  m 0 ( ~ 4 )  (5 .11 )  

yz4 = -4mr-1 

- 2ma2{nAn,~-11$4,dlL + (3n,p, - 8 , , ) ( r - 2 h i 4 i i b p  + ~ - ~ & 4 4 , 7 , ~ ) }  

- 7;ma3{ndn,nv~-1h~4,n,v 2 + 3nd(2n,nv - aUv)r  -2hi;41i.uv 
+3nn(5fiiLnv- 3 ~ , v ) ( Y - 3 ~ k 4 , d u v + Y - 4 ~ 4 4 / i . i t v ) } + m O ( a 4 ) .  (5.12) 

Here ni” = xd/r  = ( x / r ,  y / r ,  z / r )  and the notation 

p) = ccpy t - Y )  + p i p (  t + Y ) ,  $(n) = x$(n)( t - Y )  - p p ’ (  t + Y )  ( 5 . 1 3 )  
where C n )  (equivalent to n primes) denotes the nth derivative with respect to t (n 2 0) ,  has 
been applied to hik,duv .. .(t) * 

This solution, (5.10) to (5.12),which is the external solution (for the material distribution) 
of the linear approximation to (5.1) or (l-l), is referred to as the multipole wave solution 
(for the distribution) of the linear approximation. By virtue of (5.2) and (5.3) it may be 
written symbolically in the form 

(5.14) 

f The relation in brackets expresses the conservation law of 4-momentum in the linear approxi- 
mation. 
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(00) ( 1 s )  (00)  (11) ( 1 2 )  (13) g,,, g,, being independent of m and a ;  g,, corresponds to flat space-time; g,,, g,,, g i k ,  ..., 
(IS) gik, ,.. respectively constitute what are called the dipole, quadrupole, octupole, ..., ZS-pole, 
... wave solutions of the linear approximation (or the (ll), (U), (13)) ..., (Is), ... waves) 
appropriate to the sources ; and the static part g,k + mgik, which gives the linear approxima- 
tion to the Schwarzschild solution, represents what is simply referred to as the monopole 
solution for the sources. 

From the second of (5.14) it follows that an isolated oscillating system does not produce 
dipole waves as well as monopole waves. The lowest wave-like term in the multipole wave 
solution (5.14) is the one in ma2, which corresponds to the quadrupole waves (cf. Boardman 
and Bergmann 1959, Bonnor 1963, Rotenberg 1964, 1968). 

We now apply the multipole wave solution (5.10) to (5.12) to the particular system of 5 2. 
It is easy to see that for this system the only non-vanishing components of T,, are T33,  
T34, T44. From (5.6) and (5.7) we therefore have y:3, yz4, yz4 as the only non-zero yt?,. 

These components of y:, can be expressed in terms of the ordinary moments 1 (or 2s-pole 
moments, s = 0, 1, 2, ...) of the source about the plane x = 0 (and their time derivatives). 

We shall actually express them in terms of the quantities h, the dimensionless ZS-pole 
moments defined by 

(00) (10)  

S 

S 

m 

masi ( t )  = j ( t )  = [ x ~ T ~ ~ ( x ,  t )  dx (s 2 0 )  (5.15) 
J - m  

and satisfying 

h ( t )  = 0 (a 2 l ) ( t  6 t,, t 2 t2) .  (5.16) 

This is done with the assistance of the following two relations, proved at the end of this 
section: 

S 1 1 s+l 
hS3(t) = -~ i”t), L ( t )  = - --h’(t) (s 2 0) (5.17) 

(s + l)(s + 2) s s  1 
where 

masf2hS3(t) = 1 X ~ T ~ ~ ( Z ,  t )  d x ,  =J^ X ~ T ~ ~ ( X ,  t )  d z  ( s  2 0) .  (5.18) 
S m m 

- m  - 0 2  

We proceed by putting x = /3 = X = ,U = v = . . . = 3 in (5.10) to (5.12) and employing 
(5.17): the result, expressed explicitly up to terms in a3, is 

2 ~ )  + mo(a4) (5.19) yS3 0 = -2ma2r-liE”-jma3 cos ~ ( r - l h ’ ” + r -  
2 3 3 

y:4 = 2ma2 cos O(r-lli“ + r-zh’) 
2 2 

+$ma3(cos2 Or-lL’”+ (3  cos2 0 - l ) ( ~ - ~ h ” +  ~ - ~ h ’ ) ) +  mO(a4) (5 2 0 )  
3 3 3 

-~ma3{cos3 %r-1h’”+3(2cos3 0-cos % ) ~ - ~ h “  
3 3 

+3(5 cos3 8-3 COS e ) ( ~ - ~ h ’ + ~ - 4 i E ) ) + ~ o ( ~ ~ )  
3 3 

(5.21) 

where the notation (5.13) applies to h d2f i. 
S 
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m 2  
2 2 

This approximate metric corresponds to Galilean coordinates x i  = (x, y ,  x, t) .  We 
now transform from these coordinates to coordinates (Y, 0, +, t )  and reduce the resulting 
approximate metric to diagonal form by means of the coordinate transformation 

(5.22) 

(1s) (1s) m 

Y = r*-m+ 2 mas tl (Y*, 8*, t*), 

$ = +*, 

8 = 8* + 2 mas p (Y*, 8*, t*) 
S = 2  5=2 

(1 S) 
m 

t = t*+ 2 mas 6 (Y*, 8*, t*) 
s = 2  

(1s) 
where tl ( r ,  8, t ) ,  .., (s 2 2) are given by 

( 1 2 )  p = s c ( - Z ~ - ~ h ’ - r - ~ h + r - l ~ ~  ~ - ~ h d r )  

2 2 m 2  
(5  2 3 )  

etc. in which s = sin 0, c = cos 0. If we omit terms involving mpas ( p  2 2, s 2 0) and 
the asterisks the result is 

(is) 1 (lS)l 5=2 

m m 

g3,= - r2s in20  1 +  2 masC , g4,= 1-2mr-l+ 2 masD 
s = 2  

where the (00) and (10) solutions appear explicitly on the right as 

( 0 0 )  (00)  ( 0 0 )  ( 0 0 )  
g,, = - 1, g,, = - r 2 ,  g,, = - r 2  sin2 0 ,  g,, = 1 (5 2 6 )  

(5.27) 

where the (1 1) (dipole) solution is non-existent, 

(5.28) 
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and where the (1s) solutions (s 2 2) are given by 

(5 29)  1 

etc. We can verify by direct substitution that the above (lo), (12), (13) solutions satisfy the 
respective (1s) approximations given in the appendix as (Al) to (A7) ( P  = Q = ... = N = 0) 
for the diagonal metric (4.3). 

In  subsequent work we require, in addition to the (lo), (U) ,  (13) solutions, the form 
of the (14) solution as far as terms of order Y - ~ .  In  fact, expressions for the appropriate 
(1s) solution up to order Y - ~  for any s 2 2 are found to be of the following forms: 

(5.31) 

Finally, we establish (5.17). The  conservation equations in the parenthesis in (5.8) 
reduce, for the linear source, to 

T33.3 = T34,4,  T43,3 = T44.4 (Til, E Tik(z, t)). (5.32) 
Multiplying the second of (5.32) by zS+l and integrating along Ox between the limits 
z = i CO, we have 

m m ”jm z ~ + ~ T ~ ~  dx = j X S t 1 T 4 3 , 3  dZ = 1 {(Z””T43),3 - ( S f  l)ZST43} d.Z 
dt - m  - m  

(5.33) 

Since the T,, vanish outside the source it follows that the first term on the extreme right 
is zero, and so we obtain the second of (5.17). Similarly, by multiplying the first of (5.32) 
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by zs + and integrating along Ox between the limits z = & CO, we get 
S 1 s + 1  
h33(t) = - --hh4(t); 

s + l  
(5.34) 

inserting in this the relation obtainable from the second of (5.17) by replacing s by 
s + l  gives the first of (5.17). 

6. The second approximation 
As the 4-momentum of the source is conserved in the linear, (Is), approximations, we 

are led to consider the second, (2s), approximations in search for a secular change in mass 
of the source. Of the (2s) approximations we shall study those for which s < 4, the most 
important of these being the (24) approximation, which is the lowest one revealing a 
permanent change in mass of the source. 

The  exact solution of a (2s) approximation, except for s = 0, 1, is extremely difficult 
to obtain. Our aim is to find a permanent change in the mass of the source resulting from 
the finite period of its vibration. Those parts of the g,, which are transient, i.e. which are 
each the same after the oscillation as before, are of no interest and may be ignored in the 
analysis. Terms of order higher than r - l  may be ignored too, since, from the Schwarzschild 
solution 

( 2 s )  

ds2 = - (1 - Zmr-l)-l dr2 - r2(de2 +s2  d+2) + (1 - 2 m r - I )  dt2 (6.1) 
it is evident that terms in the metric representing variation in gravitational mass during the 

The equations constituting any ( p s )  approximation are (Al) to (A7), where P, Q, ..., AT 
on the right consist entirely of interaction terms known from previous approximations. 
Their solution is given by (A8) to (All) ,  which contain six functions of integration, (A12). 
The key to this solution is the value of A which satisfies the inhomogeneous wave 
equation (AS). 

For p 2 2, the ( p s )  solution (A8) to ( A l l )  is indeterminate to the extent of a comple- 
mentary solution of the (ps )  approximation, i.e. a solution of 

interval t ,  < t < t ,  are of order r - l .  (PS) ( P S )  ( P S I  

( P S )  

(PSI  

@ l m k l k )  = (6.2) 
where the Olm here stand for the left-hand sides of (Al) to (A7). However, we shall 
suppose that the functions representing the essential sources of the wave field have already 
been chosen for the ZS-pole wave solutions of the linear, (Is), approximations 

(1s) 

@Lm(gtk) = O* ( 6 . 3 )  
KO fresh source functions are to be used other than those which are necessary to satisfy 
the inhomogeneous equations (Al) to (A7), and which are non-singular for Y > 0 and 
lead to Galilean conditions at infinity. For this reason, in the (2s) approximations (s < 4), 
which are going to be examined, all the functions (A12) of integration, save possibly 

x (Y, t ) ,  will be ignored, except for the purpose of choosing suitable lower limits of various 
integrals we meet in solving the (2s) approximations. Functions of integration resulting 
from solution of (A8) will be treated similarly. 

In  considering the (2s) approximations step by step from s = 0 to 4, we shall be 
interested only in non-transient terms of order not higher than r - l  in their solutions. As 
these do not yield terms of order higher than Y - ~  on the left of (Al) to (A7), we therefore 

do not need to evaluate P, Q, ..., N on the right of these equations further than terms 
of order Y - ~ .  However, we shall at first retain in the solutions terms up to order as high as 

Y - ~ ,  except those in A of order exceeding r - l  that are not needed to satisfy the key equa- 
tion (A8) up to order r W 3 .  This is for the purpose of verifying that the solutions thus 

( 2 s )  

( 2 S X 2 S )  ( 2 s )  

(2s) 
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obtained actually satisfy (Al) to (-47) up to order Y - ~ ,  i.e. make all terms up to order Y - ~  
cancel each other on substitution back into equations (Al) to (A7).t After this verification, 
terms significant to a secular change in the mass of the source will be picked out. 

Turning to the particular values of s from 0 to 4 we remark first that the (20) approxima- 
tion does not interest us. This is simply because the solution g,k of any (PO) approximation 
is clearly the pth approximation (mp contribution) to the (static) Schwarzschild metric (6.1) 
of a central mass m, to which the linear source reduces when a = 0. The (21) approxima- 
tion vanishes because, from (5.28), there are no g i k  to produce with g,, non-linear Y l m  
in (3.2) ( p  = 2, s = 1); thus, according to our agreement not to introduce fresh source 
functions when unnecessary, the g& must be put equal to zero. 

As for the (22) approximation, by virtue of (5.28) the terms in Y l m  on the right of (3.2) 
( p  = s = 2) only come from the combination 

(PO) 

(11) (10) (21)  

(21)  

( 2 2 )  

(6.4) 
(10) (12) 
gik g,k 

2 ( l r )  of the g,, (and their derivatives)$ and, up to order Y - ~  at least, are linear in h(”)(t TY) 
(n  > 0). In  fact, up to order Y - ~ ,  

2 
From (5.16) it is reasonable to assume that this linearity in P ) ( t  i~) implies that no per- 
manent change of order not exceeding is to be found in the (22) approximation to the 
metric. In  confirmation of this, the (22) solution turns out to be (Rotenberg 1964) 

i 
(22) 
A = - 4s2y-1 In y h”’ + 4(2 - 3s2)1.-2 In y - $s2y- lhfrf 

2 2 2 

(22) 
B = -2s2y-1 lnyh’”-4(2-3s2)y-3 lnYh’-”h’f’+4S2y-3h’ 

( 2 2 )  

2 2 2 2 

I 
) (6.6) 

~ 

I 

c = 2 ~ 2 ~ - 1 1 n r h ~ ~ ~ + 8 ~ 2 ~ - 2 l n r j E ” - 4 ( 2 - ~ 2 ) r - 3  Inr  h’ 
2 2 2 

+gs2r-1h”+ !5s2r-2j’f  +23&s2y-3h’ 
2 2 

(22) 
D = - 4 ~ ~ r - l  In Y h”’+4(2 - s2)r-2 In Y A” - 1 6 ~ ~  In Y h’ 

2 2 2 

-gs  4 2 Y - l h / ” - ~ ~ ~ s 2 Y - 2 A f ~ + ( ~ 3 ~ -  8s2)Y-3h’  
2 2 2 

(22 )  ( 2 2 )  ( 2 2 )  
-up to order r - 3  this solution satisfies (Al) to (A7) with P, Q,  ..., N on the right given 
as in (6.5), and it corresponds to the choice given by 

(6.7) 
(22) -1(22) 6 4  -3hM 
X 1 + Y  x = -3-7 

2 

t Such solutions ensure that up to the (24)  approximation the total flux of ‘phoney’ matter 
(obtained by means of the energy tensor Ttk) across a large sphere, centre the origin and radius r ,  
is of order Y - ~ ,  and therefore zero across an infinite sphere. Thus, as far as secular variation of the 
mass of the source is concerned, the approximate solutions and the corresponding exact solutions 
of the (2s)  approximations (s < 4) should give the same result (see Bonnor 1959, § 11). 

2 The combination g,k x gt, of g,, (and their derivatives), we say, represents the (2m-pole) x (2n-pole) 
(lm) (In) ( l r )  

interaction of the waves. 
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for the function x (Y, t )  of integration in (A12)) which is necessary to prevent singularities 
on the axis Ox of symmetry (except at 0). The absence of any permanent change of 
order not exceeding Y - ~  from the (22) metric is clearly seen from (6.6). Similarly no such 
change appears in the (23) metric. 

It remains now to study the (24) approximation. This is done in the next section, in 
which it is concluded that there does generally occur in this approximation a secular varia- 
tion in mass of the source on account of the quadrupole xquadrupole interaction of the 
waves. 

( 2 2 )  

7. The (24) approximation: change of mass of the source 

on the right of (Al)  to (A7), come from the combinations 

( 2 4 )  (24)  ( 2 4 )  
The  non-linear terms in the (24) approximation, i.e. those comprising P, Q, ..., N 

( I T )  of the gik (and their derivatives). Of these combinations we need consider only the last, 
for the following reason: by virtue of (5.28) the second combination vanishes. From 
(5.27) and (5.31)) the first combination gives leading terms up to order r - 3  of forms 
similar to those of the leading terms of the combination (6.4) (the non-linear contribution 
(6.5) in the (22) approximation), and like the latter combination yields no non-transient 
terms of order not higher than Y - ~  in the metric. By means of (5.29) the precise expressions 

for P, Q, ..., N consisting only of the effective non-linear terms can be found by a lengthy 
but straightforward calculation: up to Y - ~  terms they are 

(24)(24) (24)  

R 
where we have employed Y ,  the last of the four notations 

A 
%2X( t - Y) + p x ( t  + Y), x = 2X(t-r)-/32X(t+r) ) 

2 
X( f )  = h”2( f )  . (7.5) 
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A - ( $ 5 ~ ~  + &Gs4)y-’ Y + RA 
( 2 4 )  2 
B = - ( i L g s 2 + 3 1 6 s 4 ) ~ - 1 Y -  ( & 2 - 3 ~ 4 ) ~ - 1  r r  r - : I * d y + R ,  
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As can be verified, this solution satisfies, up to order Y-,, the (24) approximation given by 

(Al) to (A7) with P, Q, ..., N as in (7.2). 
It is hard to interpret the (24) solution (7.7) physically, but the coordinate transforma- 

tion 

(24) (24) (24) 

= y*-m2a4 \(i2g-ilgs*2 - -1. 40s  *4 ) jr* q- 'P (q ,  t*) dq 
1 m 

(s* = sin e*, c* = cos e*) transforms the solution to one that can be physically interpreted, 
as we shall soon see. The  transformed (24) solution, omitting the asterisks, is 

J m  

J P  

(7.13) 

the earlier approximations are not affected. Now, from the definitions (7.8) to (7.11) of 
R A ,  ..., R, we immediately observe that these contributions on the right of (7.13) consist 
of terms, everyone of which is either of order Y - 2  or higher for all t ,  or of order Y - ~  but 
tends to zero as t -+ & CO. Thus RA, ..., RD do not yield any non-transient change of order 
not exceeding r - l  in the metric. Furthermore, it can easily be shown that the integral 
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expressions on the right of (7.13) which involve 

I r  r ] - G ( r ] ,  t )  dr], lr q-G?(r], t )  dq (n  = 1 , 2 )  (7.14) 

also do not contribute to any such change in the metric (Bonnor 1959, Rotenberg 1964). 
So, on neglect of RA, ..., R, and the integral expressions, the (24) solution (7.13) becomes 

m 03 

on account of the fourth of (7.4) and (7.5). Given r > 0, we have 

This result corresponds to an approximate Schwarzschild metric, with terms in r-” (n  2 2)  
ignored, for a central mass r?z given by 

a Ill2 -&p2m2a4 h (t) df for t < t ,  - r  
(7.17) % = [  2 2 4 t l  

l”ja m a 1:: $12(,$) d t  for t > t ,  + r .  

Hence the above solution (7.13) of the (24) approximation shows that there occurs in this 
approximation a permanent variation 

(7.18) 

in the mass of the source on account of the quadrupole xquadrupole interaction of the 
waves represented by the third combination of (7.1). This variation in mass is, up to the 
(24) approximation, precisely equal and opposite to the total energy removed by the waves 
as calculated by means of the pseudo-tensor (Rotenberg 1964, 1968). 

In  conclusion, the result follows from (7.18) that no secular change of mass occurs, 

either when the vibration of the source is of the very special type characterized by h” = 0 
or, as expected, when the waves of the field are stationary ( E  = ,R = 3). 
Acknowledgments 

to the subject of this paper. 

Appendix. The approximate field equations and their solution 
The (ps )  approximation corresponding to the diagonal metric (4. l), which is formed 

by equating to zero the coefficients of mpas obtained on substitution of the expansions (4.3) 
into (l.l), is written out below. T o  save printing, the labels (ps) ,  which should have been 
placed above all the capital letters, have been omitted in this appendix, except where 
confusion might arise without them. 

Am def = ----( :5 a-p)mza41 t 2  h 2 q  ( 8 ) d t  ( x + p  = 1) 
t l  

2 

The author is deeply grateful to Professor W. B. Bonnor for helpful discussions leading 

2R11 = 0: -A44+B11+ C11 +D11+2~-’( -A ,  +B,  + C1) 
+ Y - ~ ( A Z ~ + A ~  Cot 0 )  = P (Al)  

2r-’R22 = 0: B,,-B44 +Y-’( - A, +3B, + C1 +D,) 
+ Y - ~ A , ,  - 2~ - B, cot e + 2~ + cZ2 + 2c2 cot e + D~,) = Q ( ~ 2 )  



IVixture of outgoing and incoming gravitational ifadiation 293 

2r -2  cosec28R33 = 0: C11-C44+~-1(-Al+B1+3C1+D1) 

+tr-2(A2 cot 8 - 2 4  -B2 cot 8 + 2 B +  C2,+2C2 cot O+D2 cot 8) = R (A3) 
21144 = 0:  A44+B44+C44-D11-2~-~D1-~-~(022+D2~0t  8) = S (A4) 

2R12 = 0: -Blcot8+C12+Clcot8+D,2-r-1(A2+D2) = L (A5) 
= A%+’ (A6) 

= N .  (A7) 

A subscript 1, 2 or 4 after A, B, C or D denotes differentiation with respect to r ,  6’ or t- 
unless otherwise implied this notation is to apply to any non-tensorial symbol. The  left- 
hand sides of the above equations comprise terms linear in the g,, (and their derivatives). 
The  functions P, Q, ..., N on the right consist of terms non-linear in the g,, (4  6 p - 1, 
Y 6 s) (and their derivatives), known from solutions of the earlier approximations, and 
these functions are zero in the linear, (ls), approximations. 

The (ps)  approximation given above has been integrated by Rosen and Shamir (1957), 
Bonnor (1959), and we merely write out its solution. I t  is 

(PS) 

( a y )  

are six functions of integration. The key to this solution is the solution for A of the 
inhomogeneous wave equation (A8). 

The  six arbitrary functions (A12) must be chosen to meet the following two require- 
ments: (i) the (ps)  metric shall be Galilean at infinity, (ii) it shall be non-singular on the 
axis of symmetry 02, except at 0. A sufficient condition for the second requirement to be 
satisfied is that 

be of class C2 near s ine  = 0 (A131 
( P S )  ( P S )  

for some H and K ,  non-singular for all r > 0 and all t. I t  is necessary, whenever the 
above (ps)  solution is used, to substitute it back into the (ps)  field equations to determine 
whether any additional conditions are to be imposed on the six arbitrary functions. 



294 M. A. Rdenberg 

Now suppose (A13) is satisfied. Subject the metric (4.3) to the sequence of coordinate 
transformations 

(PS) ( P S )  

Y = v*+&mpasr* H(r* ,  t*) ,  0 = 8*+QmpasK(r*, t*)sinO*, + = +*, t = t* (A141 
(p = 1, 2, ...; s = 0, 1, 2, ...). Then, on omitting the asterisks, we obtain for the (ps)  
approximation to the non-diagonal metric (4.2) the coefficients A, 23, ..., G satisfying 
the condition that 

( P S ) ( P S )  ( P S I  

( P S I  ( P S I  (PSI ( P S )  (PS) (PSI  ( P S )  

A ,  B cosecp 8, C cosecp 8, D, E cosec 8, F ,  G cosec B 
be of class C2 near s in8  = 0. 

This is the more usual form of statement of the sufficient condition of regularity along Oz 
for the (ps )  metric. 

Every approximate solution obtained in this paper directly satisfies either (A13) or (A15). 

(A15) 
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